systematic lengthening of $\mathrm{H} \cdots \mathrm{O}$ distances) due to the character of X-ray scattering. The coordination of the $\mathrm{H}_{2} \mathrm{O}$ molecules is of type O class 3 according to the classification of Ferraris \& Franchini-Angela (1972) and Chiari \& Ferraris (1982) with significant fivefold coordination of all O atoms O 5 to O 9 . The hydrogen-bonding scheme challenges the verification by neutron diffraction. Corresponding experiments are planned.

References

Bauren, E.-B. \& Ingri, N. (1967). Acta Chem. Scand. 21, 25112514.

Chiari, G. \& Ferraris, G. (1982). Acta Cryst. B38, 2331-2341.
Enraf-Nonius (1989). The Enraf-Nonius CAD-4 SDP - A RealTime System for Concurrent X-ray Data Collection and Crystal Structure Determination. Enraf-Nonius, Delft, The Netherlands.
Felsche, F., Ketterer, B. \& Schmid, R. L. (1984). Thermochim. Acta, 77, 109-121.
Felsche, J., Ketterer, B. \& Schmid, R. L. (1985). Thermochim. Acta, 88, 443-451.

Ferraris, G. \& Franchini-Angela, M. (1972). Acta Cryst. B28, 3572-3583.
Jamieson, P. B. \& Dent Glasser, L. S. (1967). Acta Cryst. 22, 507-522.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nowotny, H. \& Szekely, G. (1952). Monatsh. Chem. 83, 568-582.
Schmid, R. L. \& Felsche, J. (1983). Thermochim. Acta, 71, 359-364.
Schmid, R. L. \& Felsche, J. (1990). Acta Cryst. C46, 1365-1368.
Schmid, R. L., Felsche, J. \& McIntyre, G. J. (1984). Acta Cryst. C40, 733-736.
Schmid, R. L., Felsche, J. \& McIntyre, G. J. (1985). Acta Cryst. C41, 638-641.
Schmid, R., Huttner, G. \& Felsche, J. (1979). Acta Cryst. B35, 3024-3027.
Schmid, R. L., Ketterer, B., Felsche, J. \& Hiller, M. (1988). Z. Kristallogr. 182, 233-235.

Schmid, R. L., Zsolnai, L., Felsche, J. \& Huttner, G. (1980). Acta Cryst. B37, 789-792.
Smolin, Yu. I., Shepelev, Yu. F. \& Butikova, I. K. (1973). Sov. Phys. Crystallogr. 18, 173-176.
Williams, P. P. \& Dent-Glasser, L. S. (1971). Acta Cryst. B27, 2269-2275.

Acta Cryst. (1991). C47, 1148-1150

Crystal Chemistry of cyclo-Hexaphosphates. XI. Structure of Ammonium Copper cyclo-Hexaphosphate Octahydrate

By M. T. Averbuch-Pouchot and A. Durif
Laboratoire de Cristallographie, associé à l'Université J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France

(Received 12 September 1989; accepted 10 December 1990)

Abstract

Cu}_{2}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}, M_{r}=781 \cdot 033\), triclinic, $\quad P \overline{1}, \quad a=7.413$ (3),$\quad b=9.334$ (4),$\quad c=$ 9.634 (4) $\AA, \quad \alpha=116.23$ (5),$\quad \beta=107.98$ (5), $\quad \gamma=$ $83 \cdot 10^{\circ}, V=569$ (1) $\AA^{3}, Z=1, D_{x}=2 \cdot 280 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Mo $K \bar{\alpha})=0.7107 \AA, \quad \mu=2.280 \mathrm{~mm}^{-1}, \quad F(000)=$ 394, $T=294 \mathrm{~K}$, final $R=0.030$ for 2293 reflections. The $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions and the distorted CuO_{6} octahedra form a two-dimensional network parallel to the $b c$ plane. These layers are interconnected in a three-dimensional manner by the $\left(\mathrm{NH}_{4}\right) \mathrm{O}_{8}$ polyhedra and the hydrogen-bond network.

Introduction. Several divalent-monovalent cation cyclo-hexaphosphates have already been described by the authors: $\mathrm{Mn}_{2} \mathrm{Li}_{2}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right) \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (AverbuchPouchot, 1989), $\mathrm{Cd}_{2} \mathrm{Na}_{2}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right) \cdot 14 \mathrm{H}_{2} \mathrm{O}$ (AverbuchPouchot, 1990), $\mathrm{Ca}_{2} \mathrm{Li}_{2}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$ and its isotype, the corresponding calcium-sodium salt (AverbuchPouchot \& Durif, 1990). In the present work we describe the chemical preparation and crystal structure of ammonium copper cyclo-hexaphosphate octahydrate, $\mathrm{Cu}_{2}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$.

0108-2701/91/061148-03\$03.00

Experimental. Crystals of the title compound have been prepared by using an almost saturated aqueous solution of ammonium cyclo-hexaphosphate, added with the stoichiometric amount of a copper hydroxycarbonate $\left[\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}\right]$. In this slurry, drops of concentrated hydrochloric acid were added until the copper hydroxycarbonate disappeared. Crystals of $\mathrm{Cu}_{2}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$ appear immediately as diamond-like plates. Polycrystalline samples can be prepared by slow evaporation at room temperature of an aqueous solution of copper chloride and ammonium cyclo-hexaphosphate corresponding to the stoichiometry $\mathrm{CuCl}_{2} /\left(\mathrm{NH}_{4}\right)_{6}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right)=3$. This salt is very sparingly water soluble.

Crystal size: $0.19 \times 0.19 \times 0.10 \mathrm{~mm}$ (a diamondlike plate). Density not measured. Philips PW1100 diffractometer, graphite monochromator. 15 reflections ($10<\theta<17^{\circ}$) for refining unit-cell dimensions. ω scan, scan width: $1 \cdot 20^{\circ}$, scan speed: $0.02^{\circ} \mathrm{s}^{-1}$, total background measuring time: 6 s .2651 reflections collected $\left(3<\theta<30^{\circ}\right), \pm h, \pm k, l, h_{\max }=10, k_{\max }=12$, $l_{\text {max }}=13$. Two orientation and intensity control (C) 1991 International Union of Crystallography

Table 1. Final atomic coordinates and B_{eq} for non -H atoms ($B_{\text {iso }}$ for H atoms), e.s.d.'s are given in parentheses

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \boldsymbol{\beta}_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
$\mathrm{Cu}(1)$	0	0	0	$1 \cdot 12$ (1)
$\mathrm{Cu}(2)$	$!$	$\frac{1}{2}$	0	1.45 (1)
$P(1)$	0.0588 (1)	0.77460 (9)	$0 \cdot 35030$ (8)	1.03 (1)
$P(2)$	0.8224 (1)	0.21588 (9)	$0 \cdot 32442$ (8)	1.06 (1)
$\mathrm{P}(3)$	0.7343 (1)	0.87383 (9)	0.14231 (8)	1.01 (1)
$\mathrm{O}(E \mid 1)$	0.2049 (3)	0.8862 (3)	0.3759 (3)	1.69 (5)
$\mathrm{O}(E 12)$	0.0759 (4)	0.6025 (3)	$0 \cdot 2460$ (3)	1.81 (5)
$\mathrm{O}(L 12)$	0.0376 (3)	0.7988 (3)	0.5193 (2)	1.38 (4)
$\mathrm{O}(L 13)$	0.8497 (3)	0.8310 (3)	0.2887 (2)	1.57 (4)
$\mathrm{O}(E 21)$	0.6970 (3)	0.3542 (3)	0.3761 (3)	1.69 (5)
$\mathrm{O}(E 22)$	0.9401 (3)	0.2067 (3)	0.2222 (3)	1.78 (5)
$\mathrm{O}(223)$	0.6903 (3)	0.0580 (3)	0.2378 (3)	1.33 (4)
$\mathrm{O}(E 31)$	0.5514 (3)	0.7850 (3)	0.0642 (3)	1.67 (5)
$\mathrm{O}(E 32)$	0.8603 (3)	0.8550 (3)	0.0410 (2)	1.59 (5)
$\mathrm{O}(W 1)$	0.2383 (3)	0.9628 (3)	0.1396 (2)	1.57 (5)
$\mathrm{O}(W 2)$	0.2379 (3)	0.5575 (3)	0.0067 (3)	$2 \cdot 16$ (6)
$\mathrm{O}(W 3)$	0.5729 (4)	0.5419 (3)	0.2250 (3)	2.38 (6)
$\mathrm{O}(W 4)$	0.4102 (4)	0.1856 (3)	0.5242 (3)	$2 \cdot 13$ (6)
N	0.2936 (4)	0.3481 (4)	0.3092 (4)	$2 \cdot 15$ (7)
$\mathrm{H}(\|W\|)$	0.314 (8)	0.888 (6)	0.089 (6)	2 (1)*
$\mathrm{H}(2 W \mathrm{l})$	0.226 (8)	0.923 (6)	0.195 (6)	2 (1)*
$\mathrm{H}(1 W 2)$	0.847 (8)	0.486 (6)	0.063 (6)	2 (1)*
$\mathrm{H}(2 W 2)$	0.206 (8)	0.567 (7)	0.088 (6)	3 (1)*
$\mathrm{H}(1 W 3)$	0.587 (8)	0.637 (6)	0.293 (6)	3 (1)*
$\mathrm{H}(2 W 3)$	0.605 (8)	0.477 (7)	0.249 (6)	3 (1)*
H(1W4)	0.338 (8)	0.105 (7)	0.493 (6)	3 (1)*
$\mathrm{H}(2 W 4)$	0.507 (9)	0.847 (7)	0.458 (7)	4 (2)*
$\mathrm{H}(1 \mathrm{~N})$	0.254 (9)	0.448 (7)	0.345 (7)	3 (2)*
$\mathrm{H}(2 \mathrm{~N})$	0.293 (9)	0.290 (8)	0.373 (7)	5 (2)*
$\mathrm{H}(3 \mathrm{~N})$	0.379 (9)	0.348 (7)	0.284 (7)	4 (2)*
$\mathrm{H}(4 \mathrm{~N})$	0.21 (1)	0.314 (8)	0.221 (8)	5 (2)*

reflections ($0 \overline{2} 5$ and $02 \overline{5}$) measured every 2 h without any significant variation. 2631 reflections kept after averaging Friedel pairs ($R_{\mathrm{int}}=0.032$). Lorentz and polarization corrections, no absorption correction. Structure solved by classical methods: study of the three-dimensional Patterson function and successive Fourier syntheses. H atoms located by difference Fourier syntheses. Anisotropic full-matrix leastsquares refinements (on F), isotropic for H atoms. Unit weights. Final refinements with 2293 reflections $\left(F>2 \sigma_{F}\right)$. Final $R=0.030(w R=0.034), S=0.951$, max. $\Delta / \sigma=0.04$, max. peak height in the final difference Fourier synthesis $=0.716 \mathrm{e}^{\AA^{-3}}$. No secondary-extinction correction. Scattering factors for neutral atoms and $f^{\prime \prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B). Enraf-Nonius (1977) SDP used for all calculations. Computer used: MicroVAX II.

Discussion. Table 1 reports the final atomic coordinates.* The $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion is centrosymmetric, located around the inversion centre at 0,0 , $1 / 2$. As usually observed for $\mathrm{P}_{6} \mathrm{O}_{18}$ groups with such a $\overline{1}$ internal symmetry the $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angles depart

[^0]Table 2. Main interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ in the atomic arrangement of $\mathrm{Cu}_{2}-$ $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$, e.s.d.'s are given in parentheses

The $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion

significantly from the theoretical value corresponding to a planar ring: here they spread from 95.54 to 138.87°. The $\mathrm{P}(2) \mathrm{O}_{4}$ and the $\mathrm{P}(3) \mathrm{O}_{4}$ tetrahedra have no special features and their main geometrical characteristics, reported in Table 2, are quite similar to what is commonly observed in condensed phosphoric anions, whereas in the $\mathrm{P}(1) \mathrm{O}_{4}$ tetrahedron an unusual feature occurs. The $\mathrm{O}(L)-\mathrm{P}-\mathrm{O}(L)$ angle observed in this tetrahedron is $95 \cdot 1^{\circ}$, departing significantly from the value generally observed in such anions ($100 \cdot 0^{\circ}$). The small value of this angle induces a short $\mathrm{O}(L)-\mathrm{O}(L)$ distance ($2 \cdot 355 \AA$) rather unusual in this type of anion. In spite of this anomaly, the average values observed in this tetrahedron
for the $\mathrm{P}-\mathrm{O}$ distances and the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles ($1.540 \AA$ and $109 \cdot 1^{\circ}$) are the normal ones.
The two Cu atoms are located on inversion centres, $\mathrm{Cu}(1)$ at $(0,0,0) \mathrm{Cu}(2)$ at $(1 / 2,1 / 2,0)$. Both have an octahedral coordination made by four O atoms and two water molecules for $\mathrm{Cu}(1)$ and four water molecules and two O atoms for $\mathrm{Cu}(2)$. The distortion of the $\mathrm{Cu}(2) \mathrm{O}_{6}$ octahedron is significantly larger than that of $\mathrm{Cu}(1) \mathrm{O}_{6}, \mathrm{Cu}-\mathrm{O}$ distances varying from 1.962 to $2.287 \AA$ in $\mathrm{Cu}(1) \mathrm{O}_{6}$ and from i .929 to $2.499 \AA$ in $\mathrm{Cu}(2) \mathrm{O}_{6}$. Within a range of $3 \cdot 50 \AA$ the ammonium group has an eightfold coordination made by five O atoms and three water molecules with $\mathrm{N}-\mathrm{O}$ distances varying from 2.794 to $3 \cdot 384 \AA$.
The atomic arrangement can be easily described as a succession of ribbons built up by the $\mathrm{P}_{6} \mathrm{O}_{18}$ phosphoric ring anions and by the $\mathrm{Cu}(1) \mathrm{O}_{6}$ octahedra spreading parallel to the \mathbf{c} direction. These ribbons are themselves interconnected along the \mathbf{b} direction by the $\mathrm{Cu}(2) \mathrm{O}_{6}$ octahedra so as to form a layer parallel to the $b c$ plane. The connections so established by the CuO_{6} octahedra between the phosphoric groups are not identical; the $\mathrm{Cu}(1) \mathrm{O}_{6}$ octahedra share four of their O atoms with the two adjacent $\mathrm{P}_{6} \mathrm{O}_{18}$ groups while $\mathrm{Cu}(2) \mathrm{O}_{6}$ octahedra share only two. Fig. 1 is a projection of this atomic arrangement

Fig. 1. Projection along the a axis of the atomic arrangement of $\mathrm{Cu}_{2}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 8 \mathrm{H}_{2} \mathrm{O}$. The H atoms have been omitted.
along the a axis. The three-dimensional cohesion is established between these layers by the ammonium polyhedra and the hydrogen-bond network. Table 2 gives the main interatomic distances and bond angles in this atomic arrangment. The drawing was made with STRUPLO (Fischer, 1985).

References

Averbuch-Pouchot, M. T. (1989) Acta Cryst. C45, 1856-1858. Averbuch-Pouchot, M. T. (1990). Acta Cryst. C46, 10-13.
Averbuch-Pouchot, M. T. \& Durif, A. (1990). Acta Cryst. C46, 968-970.
Enraf-Nonius (1977). Structure Determination Package, version RSX11M. Enraf-Nonius, Delft, The Netherlands.
Fischer, R. X. (1985). J. Appl. Cryst. 18, 258-262.

Crystal Chemistry of cyclo-Hexaphosphates. XIII. Structure of Silver Lithium cyclo-Hexaphosphate Dihydrate

By M. T. Averbuch-Pouchot and A. Durif
Laboratoire de Cristallographie associé à l'Université J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France

(Received 28 February 1990; accepted 2 January 1991)

Abstract

Ag}_{4} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .2 \mathrm{H}_{2} \mathrm{O}, M_{r}=955 \cdot 206\), triclinic, $P \overline{1}, a=8.408$ (2), $b=7.602$ (2), $c=7.566$ (2) $\AA, \alpha=$ 107.47 (3),$\quad \beta=106.09$ (3), $\quad \gamma=72.64$ (3) ${ }^{\circ}, \quad V=$ $430 \cdot 8$ (4), $Z=1, D_{x}=3.681 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Ag} K \alpha)=$ $0.5608 \AA, \mu=2.562 \mathrm{~mm}^{-1}, F(000)=448$, room temperature, final $R=0.033$ for 3318 reflections. The present atomic arrangement has a layer organization. Planes of corner-sharing LiO_{4} tetrahedra and $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions alternate with planes of Ag atoms. The hydrogen-bond scheme is described.

Introduction. Up to now only two mixed monovalent cation cyclo-hexaphosphates have been investigated: $\mathrm{Li}_{3} \mathrm{Na}_{3} \mathrm{P}_{6} \mathrm{O}_{18} .12 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Li}_{3} \mathrm{~K}_{3} \mathrm{P}_{6} \mathrm{O}_{18} \cdot \mathrm{H}_{2} \mathrm{O}$ (Averbuch-Pouchot, 1989). These two compounds correspond to a $1 / 1$ order between the associated

cations. In the present work we describe the chemical preparation and crystal structure of a $1 / 2$ order in this class of compound: $\mathrm{Ag}_{4} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Experimental. Crystals of the title compound have been prepared by adding an aqueous solution of silver nitrate to an aqueous solution of lithium cyclohexaphosphate so as to obtain a ratio $\mathrm{Ag} / \mathrm{Li}=2$ in the resulting solution. After some days of evaporation at room temperature large elongated irregular prisms of $\mathrm{Ag}_{4} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .2 \mathrm{H}_{2} \mathrm{O}$ appeared in the solution. The compound is very sparingly soluble in water.

Crystal size: $0.16 \times 0.24 \times 0.30 \mathrm{~mm}$. Density not measured. Philips PW1100 diffractometer, graphite monochromator. 16 reflections ($10 \cdot 0<\theta<17 \cdot 0^{\circ}$) for
(C) 1991 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53813 ($21 \mathrm{pp}$. .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

